Exercise 45

A plane flies horizontally at an altitude of 5 km and passes directly over a tracking telescope on the ground. When the angle of elevation is $\pi / 3$, this angle is decreasing at a rate of $\pi / 6 \mathrm{rad} / \mathrm{min}$. How fast is the plane traveling at that time?

Solution

Draw a schematic of the plane's path at a certain time.

The aim is to find $d x / d t$ when $\theta=\pi / 3$. Use a trigonometric function to relate the angle θ with convenient sides of the triangle.

$$
\tan \theta=\frac{5}{x}
$$

Solve for x.

$$
x=5 \cot \theta
$$

Take the derivative of both sides with respect to time by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}(x) & =\frac{d}{d t}(5 \cot \theta) \\
\frac{d x}{d t} & =\left(-5 \csc ^{2} \theta\right) \cdot \frac{d \theta}{d t}
\end{aligned}
$$

Therefore, at the time when the angle of elevation is $\pi / 3$, the plane is travelling at

$$
\left.\frac{d x}{d t}\right|_{\theta=\pi / 3}=\left(-5 \csc ^{2} \frac{\pi}{3}\right) \cdot\left(-\frac{\pi}{6}\right)=\frac{10 \pi}{9} \frac{\mathrm{~km}}{\min } \approx 3.49066 \frac{\mathrm{~km}}{\min } .
$$

